Details for this torrent 

Machine Learning Artificial Intelligence PDF book collection
Type:
Other > E-books
Files:
77
Size:
726.19 MiB (761462589 Bytes)
Uploaded:
2023-07-11 05:58 GMT
By:
timnorris
Seeders:
0
Leechers:
0

Info Hash:
34A485F6415E9B32200ADABC7EF8FF84BB493FA5




Albert Bifet, Ricard Gavaldà, Geoff Holmes, Bernhard Pfahringer, Francis Bach - Machine Learning for Data Streams_ with Practical Examples in MOA.pdf
An Introduction to Statistical Learning With Applications in Python [Robert Tibshirani,Jonathan Taylor] First Print July 2023.pdf
Brendan J. Frey - Graphical Models for Machine Learning and Digital Communication (1998, The MIT Press) - libgen.li.pdf
Carl Edward Rasmussen, Christopher K. I. Williams - Gaussian Processes for Machine Learning (2006, MIT Press).pdf
Daphne Koller, Nir Friedman - Probabilistic Graphical Models_ Principles and Techniques (2009, The MIT Press).pdf
David J. Hand, Heikki Mannila, Padhraic Smyth - Principles of data mining-MIT Press (2001).djvu
Deep learning [Yoshua Bengio,Aaron Courville, Ian Goodfellow] - The MIT Press (2016) .pdf
Elad Hazan - Introduction to Online Convex Optimization-The MIT Press (2022).epub
Ethem Alpaydin - Introduction to Machine Learning (2020, The MIT Press) - libgen.li.pdf
Freund, Yoav_Schapire, Robert E - Boosting foundations and algorithms-MIT Press (2012).pdf
Gilbert Strang - Linear Algebra and Learning from Data (2019, Wellesley-Cambridge Press).pdf
Jacob Eisenstein - Introduction to Natural Language Processing (Instructor's Solution Manual) (2019, The MIT Press).7z
Jacob Eisenstein - Natural Language Processing-MIT Press(2018).pdf
Jonas Peters, Dominik Janzing, Bernhard Schölkopf - Elements of Causal Inference_ Foundations and Learning Algorithms-The MIT Press (2017).pdf
Lise Getoor, Ben Taskar - Introduction to Statistical Relational Learning (2007).pdf
Machine Learning:  A Probabilistic Perspective  (Instructor's Solution Manual) [Kevin P. Murphy] - The MIT Press (2012).pdf
Machine Learning:  A Probabilistic Perspective [Kevin P. Murphy] - The MIT Press (2012).pdf
Marc G. Bellemare - Distributional Reinforcement Learning - MIT Press (2023).epub
Masashi Sugiyama, Han Bao, Takashi Ishida, Nan Lu, Tomoya Sakai - Machine Learning from Weak Supervision_ An Empirical Risk Minimization Approach (2022, The MIT Press) - li.pdf
Masashi Sugiyama, Motoaki Kawanabe - Machine Learning in Non-Stationary Environments_ Introduction to Covariate Shift Adaptation (2012, The MIT Press).pdf
Mehryar Mohri_ Afshin Rostamizadeh_ Ameet Talwalkar - Foundations of Machine Learning (2018, The MIT Press).pdf
Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar - Foundations of Machine Learning, Second Edition [2nd Ed] (Instructor Res. last of 3, Figure.7z
Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar - Foundations of Machine Learning, Second Edition [2nd Ed] (Instructor Res. n. 1 of 3, Solution Manual, Solutions) (2018.pdf
Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar - Foundations of Machine Learning, Second Edition [2nd Ed] (Instructor Res. n. 2 of 3, Lectures) (2018, The MIT Press) - .7z
Michael I. Jordan (Editor) - Learning in Graphical Models (Adaptive Computation and Machine Learning) (1998).pdf
[Morgan Kaufmann Series in Data Management Systems] Ian H. Witten, Eibe Frank, Mark A. Hall, Christopher J. Pal - Data Mining_ Practical Machine Learning Tools and Techniques (2016, Morgan Kaufmann Publishers).pdf
Pattern Recognition and Machine Learning [Christopher Bishop] (2006).pdf
Peter D. Grunwald, Jorma Rissanen - The minimum description length principle-MIT Press (2007).pdf
Peter Spirtes, Clark Glymour, Richard Scheines - Causation, Prediction, and Search, Second Edition (2001, The MIT Press).pdf
Pierre Baldi, Soren Brunak - Bioinformatics_ the machine learning approach-The MIT Press (2001).pdf
Probabilistic Machine Learning: Advanced Topics [Kevin P. Murphy] - The MIT Press (2023).pdf
Probabilistic Machine Learning: An Introduction [Kevin P. Murphy] (Instructor's Solution Manual) - The MIT Press (2022).pdf
Probabilistic Machine Learning: An Introduction [Kevin P. Murphy] - The MIT Press (2022).pdf
Ralf Herbrich - Learning Kernel Classifiers Theory and Algorithms (2001, The MIT Press).pdf
Richard S. Sutton, Andrew G. Barto - Reinforcement learning_ an introduction (1998, The MIT Press).pdf
[Springer Series in Statistics] Trevor Hastie, Robert Tibshirani, Jerome Friedman - The Elements of Statistical Learning_ Data Mining, Inference, and Prediction. (2013, Springer).pdf
Stuart J. Russell, Peter Norvig - Artificial Intelligence_ A Modern Approach, Global Edition (2021, Pearson) - libgen.li.pdf
Stuart Russell, Peter Norvig - Artificial Intelligence_ A Modern Approach, Fourth Global Edition [4th Ed] (Instructor Res. n. 1 of 2, Solution Manual, Solutions)-Pearson Education Limited (2021).7z
Stuart Russell, Peter Norvig - Artificial Intelligence_ A Modern Approach, Fourth Global Edition [4th Ed] (Instructor Res. n. last of 2, Lectures) (2021, Pearson Education Limited) - libgen.li.7z